RULED SURFACES WITH NON-TRIVIAL SURJECTIVE ENDOMORPHISMS

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ruled Surfaces with Non-trivial Surjective Endomorphisms

Let X be a non-singular ruled surface over an algebraically closed field of characteristic zero. There is a non-trivial surjective endomorphism f : X → X if and only if X is (1) a toric surface, (2) a relatively minimal elliptic ruled surface, or (3) a relatively minimal ruled surface of irregularity greater than one which turns to be the product of P and the base curve after a finite étale bas...

متن کامل

Compact Complex Surfaces Admitting Non-trivial Surjective Endomorphisms

Smooth compact complex surfaces admitting non-trivial surjective endomorphisms are classified up to isomorphisms. The algebraic case has been classified in [3], [19]. The following surfaces are listed in the non-algebraic case: a complex torus, a Kodaira surface, a Hopf surface with at least two curves, an Inoue surface with curves, and an Inoue surface without curves satisfying a rationality c...

متن کامل

An F-space with Trivial Dual and Non-trivial Compact Endomorphisms

We give an example of an F-space which has non-trivial compact endomorphisms, but does not have any non-trivial continuous linear functionals.

متن کامل

Approximation by ruled surfaces

Given a surface or scattered data points from a surface in 3-space, we show how to approximate the given data by a ruled surface in tensor product B-spline representation. This leads us to a general framework for approximation in line space by local mappings from the Klein quadric to Euclidean 4-space. The presented algorithm for approximation by ruled surfaces possesses applications in archite...

متن کامل

Ruled Laguerre minimal surfaces

A Laguerre minimal surface is an immersed surface in R being an extremal of the functional ∫ (H/K− 1)dA. In the present paper, we prove that any ruled Laguerre minimal surface distinct from a plane is up to motion a convolution of the helicoid x = y tan z, the cycloid r(t) = (t− sin t, 1−cos t, 0) and the Plücker conoid (ax+ by) = z(x+y) for some a, b ∈ R. To achieve invariance under Laguerre t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Kyushu Journal of Mathematics

سال: 2002

ISSN: 1340-6116

DOI: 10.2206/kyushujm.56.433